* wpylib.math: added choose() function.
This commit is contained in:
@@ -49,3 +49,39 @@ def roundup(value, unit):
|
|||||||
return numpy.ceil(float(value) / float(unit)) * unit
|
return numpy.ceil(float(value) / float(unit)) * unit
|
||||||
|
|
||||||
|
|
||||||
|
def choose(n,r):
|
||||||
|
"""Computes n! / {r! (n-r)!} . Note that the following condition must
|
||||||
|
always be fulfilled:
|
||||||
|
1 <= n
|
||||||
|
1 <= r <= n
|
||||||
|
Otherwise the result is not predictable!
|
||||||
|
|
||||||
|
Optimization: To minimize the # of multiplications and divisions, we
|
||||||
|
rewrite the expression as
|
||||||
|
|
||||||
|
n! n(n-1)...(n-r+1)
|
||||||
|
--------- = ----------------
|
||||||
|
r!(n-r)! r!
|
||||||
|
|
||||||
|
To avoid multiplication overflow as much as possible, we will evaluate
|
||||||
|
in the following STRICT order, from left to right:
|
||||||
|
|
||||||
|
n / 1 * (n-1) / 2 * (n-2) / 3 * ... * (n-r+1) / r
|
||||||
|
|
||||||
|
We can show that integer arithmatic operated in this order is exact
|
||||||
|
(i.e. no roundoff error).
|
||||||
|
|
||||||
|
Note: this implementation is based on my C++ cp.inc library.
|
||||||
|
For other implementations, see:
|
||||||
|
http://stackoverflow.com/questions/3025162/statistics-combinations-in-python
|
||||||
|
|
||||||
|
Published in stack overflow, see URL above.
|
||||||
|
"""
|
||||||
|
assert n >= 0
|
||||||
|
assert 0 <= r <= n
|
||||||
|
|
||||||
|
c = 1L
|
||||||
|
denom = 1
|
||||||
|
for (num,denom) in zip(xrange(n,n-r,-1), xrange(1,r+1,1)):
|
||||||
|
c = (c * num) // denom
|
||||||
|
return c
|
||||||
|
|||||||
Reference in New Issue
Block a user