* Change to new way to obtain the 'C' fitting parameters.
This commit is contained in:
@@ -26,18 +26,19 @@ class harm_fit_func(fit_func_base):
|
||||
|
||||
Functional form:
|
||||
|
||||
E0 + 0.5 * k * (x - re)**2
|
||||
E0 + 0.5 * k * (x - r0)**2
|
||||
|
||||
Coefficients:
|
||||
* C[0] = energy minimum
|
||||
* C[1] = spring constant
|
||||
* C[2] = equilibrium distance
|
||||
Fitting parameters:
|
||||
* C[0] = E0 = energy minimum
|
||||
* C[1] = k = spring constant
|
||||
* C[2] = r0 = equilibrium distance
|
||||
"""
|
||||
dim = 1 # a function with 1-D domain
|
||||
param_names = ('E0', 'k', 'r0')
|
||||
def __call__(self, C, x):
|
||||
xdisp = (x[0] - C[2])
|
||||
y = C[0] + 0.5 * C[1] * xdisp**2
|
||||
E0, k, r0 = self.get_params(C, *(self.param_names))
|
||||
xdisp = (x[0] - r0)
|
||||
y = E0 + 0.5 * k * xdisp**2
|
||||
self.func_call_hook(C, x, y)
|
||||
return y
|
||||
def Guess_xy(self, x, y):
|
||||
@@ -52,7 +53,7 @@ class harmcube_fit_func(fit_func_base):
|
||||
|
||||
Functional form:
|
||||
|
||||
E0 + 0.5 * k * (x - re)**2 + cub * (x - re)**3;
|
||||
E0 + 0.5 * k * (x - re)**2 + c3 * (x - re)**3;
|
||||
|
||||
Coefficients:
|
||||
* C[0] = energy minimum
|
||||
@@ -63,8 +64,9 @@ class harmcube_fit_func(fit_func_base):
|
||||
dim = 1 # a function with 1-D domain
|
||||
param_names = ('E0', 'k', 'r0', 'c3')
|
||||
def __call__(self, C, x):
|
||||
xdisp = (x[0] - C[2])
|
||||
y = C[0] + 0.5 * C[1] * xdisp**2 + C[3] * xdisp**3
|
||||
E0, k, r0, c3 = self.get_params(C, *(self.param_names))
|
||||
xdisp = (x[0] - r0)
|
||||
y = E0 + 0.5 * k * xdisp**2 + c3 * xdisp**3
|
||||
self.func_call_hook(C, x, y)
|
||||
return y
|
||||
def Guess_xy(self, x, y):
|
||||
@@ -82,13 +84,13 @@ class morse2_fit_func(fit_func_base):
|
||||
|
||||
Functional form:
|
||||
|
||||
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - re)))**2
|
||||
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - r0)))**2
|
||||
|
||||
Coefficients:
|
||||
* C[0] = energy minimum
|
||||
* C[1] = spring constant
|
||||
* C[2] = equilibrium distance
|
||||
* C[3] = nonlinear constant
|
||||
* C[0] = E0 = energy minimum
|
||||
* C[1] = k = spring constant
|
||||
* C[2] = r0 = equilibrium distance
|
||||
* C[3] = a = nonlinear constant
|
||||
"""
|
||||
dim = 1 # a function with 1-D domain
|
||||
param_names = ('E0', 'k', 'r0', 'a')
|
||||
@@ -116,21 +118,23 @@ class ext3Bmorse2_fit_func(fit_func_base):
|
||||
|
||||
Functional form:
|
||||
|
||||
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - re)))**2
|
||||
+ C3 * (1 - exp(-a * (x - re)))**3
|
||||
E0 + 0.5 * k / a**2 * (1 - exp(-a * (x - r0)))**2
|
||||
+ C3 * (1 - exp(-a * (x - r0)))**3
|
||||
|
||||
Coefficients:
|
||||
* C[0] = energy minimum
|
||||
* C[1] = spring constant
|
||||
* C[2] = equilibrium distance
|
||||
* C[3] = nonlinear constant
|
||||
* C[4] = coefficient of cubic term
|
||||
* C[0] = E0 = energy minimum
|
||||
* C[1] = k = spring constant
|
||||
* C[2] = r0 = equilibrium distance
|
||||
* C[3] = a = nonlinear constant
|
||||
* C[4] = C3 = coefficient of cubic term
|
||||
"""
|
||||
dim = 1 # a function with 1-D domain
|
||||
param_names = ('E0', 'k', 'r0', 'a', 'C3')
|
||||
def __call__(self, C, x):
|
||||
from numpy import exp
|
||||
E = 1 - exp(-C[3] * (x[0] - C[2]))
|
||||
y = C[0] + 0.5 * C[1] / C[3]**2 * E**2 + C[4] * E**3
|
||||
E0, k, r0, a, C3 = self.get_params(C, *(self.param_names))
|
||||
E = 1 - exp(-a * (x[0] - r0))
|
||||
y = E0 + 0.5 * k / a**2 * E**2 + C3 * E**3
|
||||
self.func_call_hook(C, x, y)
|
||||
return y
|
||||
def Guess_xy(self, x, y):
|
||||
|
||||
Reference in New Issue
Block a user