* Introducing "wpylib" which is the collection of my small python utilities.
* graph_digitizer: Utility to help me digitize numbers from a graph image files (JPG/PNG plots).
This commit is contained in:
13
__init__.py
Normal file
13
__init__.py
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
# $Id: __init__.py,v 1.1 2009-12-04 19:30:26 wirawan Exp $
|
||||||
|
#
|
||||||
|
# wpylib main module
|
||||||
|
# Created: 20091204
|
||||||
|
# Wirawan Purwanto
|
||||||
|
#
|
||||||
|
# Main wpylib package. It is just a stub.
|
||||||
|
# The "wpylib" namespace contains all simple tools that I am making
|
||||||
|
# in the course of my research and hobby.
|
||||||
|
# In the future, useful modules will continue their lives as separate
|
||||||
|
# modules outside the "wpylib" jail. :-)
|
||||||
|
#
|
||||||
|
pass
|
||||||
85
graph_digitizer.py
Normal file
85
graph_digitizer.py
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
#!/usr/bin/ipython -pylab
|
||||||
|
#
|
||||||
|
# $Id: graph_digitizer.py,v 1.1 2009-12-04 19:30:26 wirawan Exp $
|
||||||
|
#
|
||||||
|
# Created: 20091204
|
||||||
|
# Wirawan Purwanto
|
||||||
|
#
|
||||||
|
# Simple and dirty utility module to digitize a graph (e.g. those image files
|
||||||
|
# obtained from a journal article PDF).
|
||||||
|
#
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
def make_matrix(Str, debug=None):
|
||||||
|
"""Simple tool to convert a string like
|
||||||
|
'''1 2 3
|
||||||
|
4 5 6
|
||||||
|
7 8 9'''
|
||||||
|
into a numpy matrix (or, actually, an array object)."""
|
||||||
|
if isinstance(Str, numpy.matrix):
|
||||||
|
return numpy.array(Str)
|
||||||
|
elif isinstance(Str, numpy.ndarray):
|
||||||
|
if len(Str.shape) == 2:
|
||||||
|
return Str.copy()
|
||||||
|
else:
|
||||||
|
raise ValueError, "Cannot make matrix out of non-2D array"
|
||||||
|
Str2 = ";".join([ row.rstrip().rstrip(";") for row in Str.split("\n") if row.strip() != "" ])
|
||||||
|
rslt = numpy.matrix(Str2)
|
||||||
|
if debug: print rslt
|
||||||
|
return numpy.array(rslt)
|
||||||
|
|
||||||
|
def get_axis_scaler(data, axis):
|
||||||
|
"""Simple routine to obtain the scaling factor from pixel coordinate to
|
||||||
|
x or y value. The `data' string argument is a literal table like:
|
||||||
|
xpixel ypixel xvalue
|
||||||
|
...
|
||||||
|
or
|
||||||
|
xpixel ypixel yvalue
|
||||||
|
...
|
||||||
|
Only linear scale is supported."""
|
||||||
|
from scipy import stats
|
||||||
|
datamtx = make_matrix(data)
|
||||||
|
|
||||||
|
if axis == "x":
|
||||||
|
xx = datamtx[:,0]
|
||||||
|
yy = datamtx[:,2]
|
||||||
|
else:
|
||||||
|
xx = datamtx[:,1]
|
||||||
|
yy = datamtx[:,2]
|
||||||
|
|
||||||
|
# example from
|
||||||
|
# http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/lin_reg
|
||||||
|
(gradient, intercept, r_value, p_value, std_err) = stats.linregress(xx,yy)
|
||||||
|
print gradient, intercept, r_value, p_value, std_err
|
||||||
|
|
||||||
|
#return (float(gradient[0]), float(intercept[0]))
|
||||||
|
return (gradient, intercept)
|
||||||
|
|
||||||
|
|
||||||
|
class axes_scaler:
|
||||||
|
"""The main engine to "unscale" the graph's data points from pixel (x,y) to
|
||||||
|
true axis (x,y) value. Only linear axis is supported here."""
|
||||||
|
|
||||||
|
def __init__(self, data_x, data_y):
|
||||||
|
"""Initialize the axis scalers (x and y) from a given `pixel -> axis value'
|
||||||
|
mapping."""
|
||||||
|
self.init(data_x, data_y)
|
||||||
|
|
||||||
|
def init(self, data_x, data_y):
|
||||||
|
self.xscaler = get_axis_scaler(data_x, "x")
|
||||||
|
self.yscaler = get_axis_scaler(data_y, "y")
|
||||||
|
|
||||||
|
def __call__(self, x, y):
|
||||||
|
return ((self.xscaler[0]*x + self.xscaler[1]), \
|
||||||
|
(self.yscaler[0]*y + self.yscaler[1]))
|
||||||
|
|
||||||
|
def scale_many(self, data):
|
||||||
|
mtx = make_matrix(data)
|
||||||
|
rslt = []
|
||||||
|
for row in mtx:
|
||||||
|
(x, y) = row[0], row[1]
|
||||||
|
rslt.append(list( self(x, y) ))
|
||||||
|
#print x, y
|
||||||
|
return numpy.array(rslt)
|
||||||
|
|
||||||
Reference in New Issue
Block a user