* New module: wpylib.array_tools for convenient array manipulations.
This commit is contained in:
40
array_tools.py
Normal file
40
array_tools.py
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
#
|
||||||
|
# Created: 20140207
|
||||||
|
# Wirawan Purwanto
|
||||||
|
#
|
||||||
|
|
||||||
|
"""
|
||||||
|
wpylib.array_tools
|
||||||
|
|
||||||
|
Various tools for arrays (mainly, numpy array objects).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def array_indices_cond_1d(arr, cond):
|
||||||
|
"""Get the odered list of array indices whose corresponding elements satisfy
|
||||||
|
a given condition.
|
||||||
|
Useful for conditional assignment or evaluation.
|
||||||
|
|
||||||
|
The input `cond' argument can be an ufunc-like function that evaluates
|
||||||
|
a logical expression in bulk for each of the arr's element.
|
||||||
|
Or it can be an array of logical values that has the same length as arr.
|
||||||
|
|
||||||
|
Example use case:
|
||||||
|
|
||||||
|
r = numpy.linspace(1.97, 3.5, num=150)
|
||||||
|
i_select = cond_indices_1d(r, r <= 2.5)
|
||||||
|
# ... then we can do something with r[i_select]
|
||||||
|
# for conditional assignment or value extraction.
|
||||||
|
"""
|
||||||
|
arr = numpy.asarray(arr)
|
||||||
|
assert len(arr.shape) == 1
|
||||||
|
|
||||||
|
if callable(cond):
|
||||||
|
cond = cond(arr)
|
||||||
|
# otherwise, assume cond is already a good array
|
||||||
|
return numpy.array(xrange(len(arr)))[ cond ]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user