* Added class wpylib.math.stats.avg.weight_stats for weighted statistical
analysis.
This commit is contained in:
@@ -1,6 +1,9 @@
|
|||||||
# $Id: avg.py,v 1.1 2010-10-07 15:56:55 wirawan Exp $
|
# $Id: avg.py,v 1.1 2010-10-07 15:56:55 wirawan Exp $
|
||||||
# Create: 20090112
|
# Create: 20090112
|
||||||
|
|
||||||
|
# TODO: Use less roundoff-error algorithm found in:
|
||||||
|
# http://en.wikipedia.org/wiki/Standard_deviation#Weighted_calculation
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
||||||
class avg(object):
|
class avg(object):
|
||||||
@@ -27,3 +30,48 @@ class avg(object):
|
|||||||
# Operator overloading:
|
# Operator overloading:
|
||||||
avg.__iadd__ = avg.add
|
avg.__iadd__ = avg.add
|
||||||
avg.__call__ = avg.mean
|
avg.__call__ = avg.mean
|
||||||
|
|
||||||
|
|
||||||
|
class weighted_stats(object):
|
||||||
|
def __init__(self, a=None, weights=None):
|
||||||
|
if a != None:
|
||||||
|
get_sample_stats(a, weights, result=self)
|
||||||
|
|
||||||
|
|
||||||
|
def get_sample_stats(a, weights=None, result=None):
|
||||||
|
"""Applies basic statistics (average, variance, standard deviation)
|
||||||
|
for a given sample, optionally with a weight.
|
||||||
|
"""
|
||||||
|
from numpy import asarray, count_nonzero, product, sqrt, sum, nan
|
||||||
|
a = asarray(a)
|
||||||
|
if result == None:
|
||||||
|
r = weighted_stats()
|
||||||
|
else:
|
||||||
|
r = result
|
||||||
|
if weights == None:
|
||||||
|
r.s0 = product(a.shape)
|
||||||
|
r.s1 = sum(a)
|
||||||
|
r.s2 = sum(a**2)
|
||||||
|
r.N = r.s0
|
||||||
|
r.N_nz = r.s0
|
||||||
|
else:
|
||||||
|
weights = asarray(weights)
|
||||||
|
r.s0 = sum(weights)
|
||||||
|
r.s1 = sum(weights * a)
|
||||||
|
r.s2 = sum(weights * a**2)
|
||||||
|
r.N_nz = count_nonzero(weights)
|
||||||
|
r.N = product(a.shape)
|
||||||
|
# Ref: http://en.wikipedia.org/wiki/Standard_deviation#Weighted_calculation
|
||||||
|
# TODO: Use less roundoff-error algorithm found therein.
|
||||||
|
r.avg = r.s1 / r.s0
|
||||||
|
r.var_pop = (r.s0 * r.s2 - r.s1**2) / (r.s0**2)
|
||||||
|
r.std_pop = sqrt(r.var_pop)
|
||||||
|
if r.N_nz > 1:
|
||||||
|
r.var_samp = (r.N_nz / (r.N_nz - 1.0)) * r.var_pop
|
||||||
|
r.std_samp = sqrt(r.var_samp)
|
||||||
|
else:
|
||||||
|
r.var_samp = nan
|
||||||
|
r.std_samp = nan
|
||||||
|
|
||||||
|
return r
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user