* Module wpylib.db.indexing_float: utility for floating-point (FP)-based
indexing, allowing tolerances to account for imprecise nature of FP numbers. Initial implementation, rather complicated. A simple rounding-based implementation can be put in later. Includes initial test.
This commit is contained in:
166
db/indexing_float.py
Normal file
166
db/indexing_float.py
Normal file
@@ -0,0 +1,166 @@
|
||||
#
|
||||
# wpylib.db.indexing_float
|
||||
# Utilities for indexing based on floating-point values
|
||||
#
|
||||
# Wirawan Purwanto
|
||||
# Created: 20130301
|
||||
#
|
||||
|
||||
"""\
|
||||
wpylib.db.indexing_float
|
||||
Utilities for indexing based on floating-point values
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import sys
|
||||
|
||||
|
||||
def _debug_gen_float_indices1(localvars, debug):
|
||||
from wpylib.params.params_flat import Parameters as params
|
||||
L = params(localvars)
|
||||
if debug > 50:
|
||||
print "a_sorted = ", L.a_sorted[1:]
|
||||
print "a_diff = ", L.a_diff
|
||||
print "a_avg_abs = ", L.a_avg_abs
|
||||
print "a_rdiff = ", L.a_rdiff
|
||||
print
|
||||
#print "rdiff_idx_sorted = ", L.rdiff_idx_sorted # numpy.array(L.rdiff_idx_sorted, dtype=float)
|
||||
print "rdiff_idx_sorted = ", " ".join([ "%11d" % i for i in L.rdiff_idx_sorted ])
|
||||
print "too_close = ", " ".join([ "%11d" % int(i) for i in (L.a_rdiff[L.rdiff_idx_sorted] < L.rdiff_threshold) ])
|
||||
print "a_rdiff(sort) = ", L.a_rdiff[L.rdiff_idx_sorted]
|
||||
print "a(sort) = ", L.a_sorted[1:][L.rdiff_idx_sorted]
|
||||
print
|
||||
|
||||
def _debug_gen_float_indices2(localvars, debug):
|
||||
from wpylib.params.params_flat import Parameters as params
|
||||
L = params(localvars)
|
||||
if debug > 50:
|
||||
print
|
||||
print "a_rdiff aft = ", L.a_rdiff
|
||||
print "num unique vals = ", L.n_all_unique_vals
|
||||
print "num already uniq = ", len(L.a_already_unique)
|
||||
print "unique_vals = ", L.unique_vals[0:L.n_all_unique_vals]
|
||||
print "unique_vals(sort)= ", numpy.sort(L.unique_vals[0:L.n_all_unique_vals])
|
||||
|
||||
def _debug_gen_float_indices_found_duplicates(localvars, debug):
|
||||
from wpylib.params.params_flat import Parameters as params
|
||||
L = params(localvars)
|
||||
if debug > 100:
|
||||
print "i=", L.i_found, " fused range is ", L.i1, ":", L.i+1
|
||||
print " rdiff", L.orig_rdiff
|
||||
print " idx ", L.i1, L.i, ", arr ", L.a_fused_sect
|
||||
print " avg ", L.avg
|
||||
|
||||
def _debug_gen_float_indices_results(localvars, debug):
|
||||
from wpylib.params.params_flat import Parameters as params
|
||||
L = params(localvars)
|
||||
if debug > 50:
|
||||
print
|
||||
print "rslt_vals = ", L.rslt_vals
|
||||
print "unique_map = ", L.unique_map
|
||||
|
||||
|
||||
|
||||
def generate_float_indices(arr, rdiff_threshold, debug=0):
|
||||
"""Consolidates floating point values to `unique' values whose relative
|
||||
differences are greater than a specified threshold (rdiff_threshold).
|
||||
Values that are so close together will fused to their average.
|
||||
|
||||
The input must be a one-dimensional array or list or a list-like iterable.
|
||||
"""
|
||||
from wpylib.db.result_base import result_base
|
||||
sample = numpy.array([arr[0]])
|
||||
a_sorted = numpy.empty(len(arr)+1, dtype=sample.dtype)
|
||||
a_sorted[1:] = arr
|
||||
a_sorted[1:].sort(kind='heapsort')
|
||||
a_sorted[0] = a_sorted[1] # dummy data
|
||||
a_diff = numpy.diff(a_sorted) # == a_sorted[1:] - a_sorted[:-1]
|
||||
a_avg_abs = (numpy.abs(a_sorted[1:]) + numpy.abs(a_sorted[:-1])) * 0.5
|
||||
a_rdiff = numpy.abs(a_diff) / a_avg_abs
|
||||
# hack the first rdiff since this element *must* always be present,
|
||||
# so this trick marks it as "unique":
|
||||
a_rdiff[0] = rdiff_threshold*100
|
||||
# free up the memory:
|
||||
if not debug:
|
||||
a_diff = None
|
||||
a_avg_abs = None
|
||||
# Elements whose rdiff < rdiff_cutoff should be consolidated.
|
||||
# Since there is no easy way to find these elements in bulk,
|
||||
# I resort to "sorting": :(
|
||||
rdiff_idx_sorted = numpy.argsort(a_rdiff, kind='mergesort')
|
||||
|
||||
_debug_gen_float_indices1(locals(), debug)
|
||||
|
||||
imax = len(rdiff_idx_sorted)
|
||||
# unique_map: mapping from original indices to unique indices
|
||||
unique_map = {}
|
||||
# unique_set: set of unique-ized elements, excluding those that
|
||||
# are distinct by their numerical distances
|
||||
unique_vals = numpy.empty((len(arr),), dtype= sample.dtype) # max len
|
||||
n_unique_vals = 0
|
||||
rslt = None
|
||||
for (last_idx,i) in enumerate(rdiff_idx_sorted):
|
||||
if a_rdiff[i] > rdiff_threshold:
|
||||
# Stop, all the rest of the values are unique.
|
||||
break
|
||||
elif a_rdiff[i] == -1:
|
||||
continue
|
||||
else:
|
||||
# If two values are adjacent (e.g. in this case
|
||||
# a_sorted[i] and a_sorted[i+1] -- note the dummy value
|
||||
# at element 0), there may be more than one values like that,
|
||||
# so we need to take care of that too.
|
||||
# This is why the lower bound of the indices below is "i1"
|
||||
# while the upper is "i".
|
||||
i_found = i
|
||||
i1 = i
|
||||
|
||||
while i1 > 0 and a_rdiff[i1-1] <= rdiff_threshold: i1 -= 1
|
||||
i += 1
|
||||
while i < imax and a_rdiff[i] <= rdiff_threshold: i += 1
|
||||
orig_rdiff = a_rdiff[i1-1:i].copy()
|
||||
a_rdiff[i1-1:i] = -1
|
||||
|
||||
a_fused_sect = a_sorted[i1:i+1]
|
||||
avg = numpy.mean(a_fused_sect)
|
||||
unique_vals[n_unique_vals] = avg
|
||||
for a in a_fused_sect:
|
||||
unique_map[a] = n_unique_vals
|
||||
n_unique_vals += 1
|
||||
|
||||
_debug_gen_float_indices_found_duplicates(locals(), debug)
|
||||
|
||||
# unique_vals will contain the unique elements.
|
||||
# - Then, copy over the rest elements who are already unique
|
||||
# - Also, complete the value-to-index lookup
|
||||
a_already_unique = [ a_sorted[i+1] for i in rdiff_idx_sorted[last_idx:] if a_rdiff[i] != -1 ]
|
||||
n_all_unique_vals = n_unique_vals + len(a_already_unique)
|
||||
unique_vals[n_unique_vals:n_all_unique_vals] = a_already_unique
|
||||
_debug_gen_float_indices2(locals(), debug)
|
||||
|
||||
dn = 0
|
||||
for i in rdiff_idx_sorted[last_idx:]:
|
||||
if a_rdiff[i] == -1: continue
|
||||
a = a_sorted[i+1]
|
||||
unique_map[a] = n_unique_vals + dn
|
||||
dn += 1
|
||||
|
||||
# Sort the indices based on the unique value
|
||||
rslt_sort_idx = unique_vals[:n_all_unique_vals].argsort(kind='heapsort')
|
||||
rslt_sort_ridx = dict((b,a) for (a,b) in enumerate(rslt_sort_idx))
|
||||
|
||||
# Update the value-to-index lookup and return the sorted index array
|
||||
for a in unique_map.keys():
|
||||
#unique_map[a] = rslt_sort_idx[unique_map[a]]
|
||||
unique_map[a] = rslt_sort_ridx[unique_map[a]]
|
||||
rslt_vals = unique_vals[rslt_sort_idx]
|
||||
|
||||
_debug_gen_float_indices_results(locals(), debug)
|
||||
|
||||
return result_base(
|
||||
# list of unique indices, sorted in ascending order:
|
||||
vals=rslt_vals,
|
||||
# mapping from less-unique values to the index of the new (unique-ized) new , sorted in ascending order
|
||||
index_mapping=unique_map,
|
||||
)
|
||||
|
||||
59
db/test_indexing_float.py
Normal file
59
db/test_indexing_float.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from numpy import array, concatenate
|
||||
from wpylib.db.indexing_float import generate_float_indices
|
||||
|
||||
indices1 = array([ 0.80038202, 0.28583295, 0.13505145, 0.79425102, 0.52347217, 0.47955401, 0.07961833, 0.1024241 , 0.26336713, 0.15990201, 0.81311686, 0.98632763, 0.08275991,
|
||||
0.56862337, 0.5679713 , 0.04377884, 0.93023717, 0.60270102, 0.24538933, 0.63922544])
|
||||
indices2 = array([ 0.69053462, 0.09864655, 0.86209023, 0.26140917, 0.8086512 , 0.13796145, 0.1770305 , 0.05061917, 0.81191537, 0.72801096, 0.01129504, 0.13962617, 0.56217892,
|
||||
0.94299591, 0.99302594, 0.01167897, 0.54827444, 0.20160252, 0.86603525, 0.20260494])
|
||||
|
||||
|
||||
def Test_1():
|
||||
indices_raw = concatenate((indices1, indices2))
|
||||
keys1 = numpy.sort(indices_raw)
|
||||
keys1_test10 = keys1[-10:]
|
||||
|
||||
ans = generate_float_indices(keys1_test10, 1e-2, debug=101)
|
||||
"""ans must be:
|
||||
{
|
||||
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679]),
|
||||
'index_mapping': \
|
||||
{0.80038201815850551: 0,
|
||||
0.80865119885060532: 1,
|
||||
0.81191536625506044: 1,
|
||||
0.8131168633197402: 1,
|
||||
0.8620902343091833: 2,
|
||||
0.86603524560901635: 2,
|
||||
0.93023716796725509: 3,
|
||||
0.94299590915079168: 4,
|
||||
0.98632763033630222: 5,
|
||||
0.99302594015368861: 5}
|
||||
}
|
||||
"""
|
||||
return ans
|
||||
|
||||
|
||||
def Test_1b():
|
||||
indices_raw = concatenate((indices1, indices2))
|
||||
keys1 = numpy.sort(indices_raw)
|
||||
keys1_test10 = concatenate((keys1[-10:], [1.03]))
|
||||
|
||||
ans = generate_float_indices(keys1_test10, 1e-2, debug=101)
|
||||
"""ans must be:
|
||||
{
|
||||
'vals': array([ 0.80038202, 0.81122781, 0.86406274, 0.93023717, 0.94299591, 0.98967679, 1.03 ]),
|
||||
'index_mapping': \
|
||||
{0.80038202000000003: 0,
|
||||
0.80865120000000001: 1,
|
||||
0.81191537000000003: 1,
|
||||
0.81311686000000005: 1,
|
||||
0.86209022999999996: 2,
|
||||
0.86603525000000003: 2,
|
||||
0.93023716999999995: 3,
|
||||
0.94299591000000005: 4,
|
||||
0.98632763000000001: 5,
|
||||
0.99302594: 5,
|
||||
1.03: 6}
|
||||
}
|
||||
"""
|
||||
return ans
|
||||
|
||||
Reference in New Issue
Block a user