* Moved Poly_base & friends to wpylib.math.fitting.funcs_poly.
This commit is contained in:
@@ -24,106 +24,6 @@ except ImportError:
|
||||
last_fit_rslt = None
|
||||
last_chi_sqr = None
|
||||
|
||||
class Poly_base(object):
|
||||
"""Typical base class for a function to fit a polynomial. (?)
|
||||
|
||||
The following members must be defined to use the basic features in
|
||||
this class---unless the methods are redefined appropriately:
|
||||
* order = the order (maximum exponent) of the polynomial.
|
||||
* dim = dimensionality of the function domain (i.e. the "x" coordinate).
|
||||
A 2-dimensional (y vs x) fitting will have dim==1.
|
||||
A 3-dimensional (z vs (x,y)) fitting will have dim==2.
|
||||
And so on.
|
||||
"""
|
||||
# Must set the following:
|
||||
# * order = ?
|
||||
# * dim = ?
|
||||
#def __call__(C, x):
|
||||
# raise NotImplementedError, "must implement __call__"
|
||||
def __init__(self, xdata=None, ydata=None, ndim=None):
|
||||
if xdata != None:
|
||||
self.dim = len(xdata)
|
||||
elif ndim != None:
|
||||
self.dim = ndim
|
||||
else:
|
||||
raise ValueError, "Either xdata or ndim argument must be supplied"
|
||||
if ydata: self.guess = [ numpy.mean(ydata) ] + [0.0] * (self.order*self.dim)
|
||||
def Guess(self, ydata):
|
||||
"""The simplest guess: set the parameter for the constant term to <y>, and
|
||||
the rest to zero. In general, this may not be the best."""
|
||||
return [ numpy.mean(ydata) ] + [0.0] * (self.NParams() - 1)
|
||||
def NParams(self):
|
||||
'''Default NParams for polynomial without cross term.'''
|
||||
return 1 + self.order*self.dim
|
||||
|
||||
|
||||
class Poly_order2(Poly_base):
|
||||
"""Multidimensional polynomial of order 2 without cross terms."""
|
||||
order = 2
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*2+1] * x[i] + C[i*2+2] * x[i]**2 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
class Poly_order2_only(Poly_base):
|
||||
"""Multidimensional polynomial of order 2 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 1 # HACK: the linear term is deleted
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i+1] * x[i]**2 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
class Poly_order2x_only(Poly_base):
|
||||
'''Multidimensional order-2-only polynomial with all the cross terms.'''
|
||||
order = 2 # but not used
|
||||
def __call__(self, C, x):
|
||||
ndim = self.dim
|
||||
# Reorganize the coeffs in the form of symmetric square matrix
|
||||
# For 4x4 it will become like:
|
||||
# [ 1, 5, 6, 7]
|
||||
# [ 5, 2, 8, 9]
|
||||
# [ 6, 8, 3, 10]
|
||||
# [ 7, 9, 10, 4]
|
||||
Cmat = numpy.diag(C[1:ndim+1])
|
||||
j = ndim+1
|
||||
for r in xrange(0, ndim-1):
|
||||
jnew = j + ndim - 1 - r
|
||||
Cmat[r, r+1:] = C[j:jnew]
|
||||
Cmat[r+1:, r] = C[j:jnew]
|
||||
j = jnew
|
||||
#print Cmat
|
||||
#print x
|
||||
nrec = len(x[0]) # assume a 2-D array
|
||||
rslt = numpy.empty((nrec,), dtype=numpy.float64)
|
||||
for r in xrange(nrec):
|
||||
rslt[r] = C[0] \
|
||||
+ numpy.sum( Cmat * numpy.outer(x[:,r], x[:,r]) )
|
||||
return rslt
|
||||
|
||||
def NParams(self):
|
||||
# 1 is for the constant term
|
||||
return 1 + self.dim * (self.dim + 1) / 2
|
||||
|
||||
class Poly_order3(Poly_base):
|
||||
"""Multidimensional polynomial of order 3 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 3
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*3+1] * x[i] + C[i*3+2] * x[i]**2 + C[i*3+3] * x[i]**3 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
class Poly_order4(Poly_base):
|
||||
"""Multidimensional polynomial of order 4 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 4
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*4+1] * x[i] + C[i*4+2] * x[i]**2 + C[i*4+3] * x[i]**3 + C[i*4+4] * x[i]**4 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
|
||||
class fit_result(result_base):
|
||||
"""The basic values expected in fit_result are:
|
||||
- xopt
|
||||
@@ -477,3 +377,5 @@ def fit_func(Funct, Data=None, Guess=None, Params=None,
|
||||
except:
|
||||
x = "(?)"
|
||||
raise ValueError, "Invalid `outfmt' argument = " + x
|
||||
|
||||
|
||||
|
||||
119
math/fitting/funcs_poly.py
Normal file
119
math/fitting/funcs_poly.py
Normal file
@@ -0,0 +1,119 @@
|
||||
#
|
||||
# wpylib.math.fitting.funcs_poly module
|
||||
# Created: 20150520
|
||||
# Wirawan Purwanto
|
||||
#
|
||||
# Split 20150520 from wpylib.math.fitting module
|
||||
#
|
||||
|
||||
"""
|
||||
Module wpylib.math.fitting.funcs_poly
|
||||
|
||||
Legacy examples for 2-D polynomial function ansatz for fitting.
|
||||
Newer applications should
|
||||
"""
|
||||
|
||||
|
||||
class Poly_base(object):
|
||||
"""Typical base class for a function to fit a polynomial. (?)
|
||||
|
||||
The following members must be defined to use the basic features in
|
||||
this class---unless the methods are redefined appropriately:
|
||||
* order = the order (maximum exponent) of the polynomial.
|
||||
* dim = dimensionality of the function domain (i.e. the "x" coordinate).
|
||||
A 2-dimensional (y vs x) fitting will have dim==1.
|
||||
A 3-dimensional (z vs (x,y)) fitting will have dim==2.
|
||||
And so on.
|
||||
"""
|
||||
# Must set the following:
|
||||
# * order = ?
|
||||
# * dim = ?
|
||||
#def __call__(C, x):
|
||||
# raise NotImplementedError, "must implement __call__"
|
||||
def __init__(self, xdata=None, ydata=None, ndim=None):
|
||||
if xdata != None:
|
||||
self.dim = len(xdata)
|
||||
elif ndim != None:
|
||||
self.dim = ndim
|
||||
else:
|
||||
raise ValueError, "Either xdata or ndim argument must be supplied"
|
||||
if ydata: self.guess = [ numpy.mean(ydata) ] + [0.0] * (self.order*self.dim)
|
||||
def Guess(self, ydata):
|
||||
"""The simplest guess: set the parameter for the constant term to <y>, and
|
||||
the rest to zero. In general, this may not be the best."""
|
||||
return [ numpy.mean(ydata) ] + [0.0] * (self.NParams() - 1)
|
||||
def NParams(self):
|
||||
'''Default NParams for polynomial without cross term.'''
|
||||
return 1 + self.order*self.dim
|
||||
|
||||
|
||||
class Poly_order2(Poly_base):
|
||||
"""Multidimensional polynomial of order 2 without cross terms."""
|
||||
order = 2
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*2+1] * x[i] + C[i*2+2] * x[i]**2 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
|
||||
class Poly_order2_only(Poly_base):
|
||||
"""Multidimensional polynomial of order 2 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 1 # HACK: the linear term is deleted
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i+1] * x[i]**2 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
|
||||
class Poly_order2x_only(Poly_base):
|
||||
'''Multidimensional order-2-only polynomial with all the cross terms.'''
|
||||
order = 2 # but not used
|
||||
def __call__(self, C, x):
|
||||
ndim = self.dim
|
||||
# Reorganize the coeffs in the form of symmetric square matrix
|
||||
# For 4x4 it will become like:
|
||||
# [ 1, 5, 6, 7]
|
||||
# [ 5, 2, 8, 9]
|
||||
# [ 6, 8, 3, 10]
|
||||
# [ 7, 9, 10, 4]
|
||||
Cmat = numpy.diag(C[1:ndim+1])
|
||||
j = ndim+1
|
||||
for r in xrange(0, ndim-1):
|
||||
jnew = j + ndim - 1 - r
|
||||
Cmat[r, r+1:] = C[j:jnew]
|
||||
Cmat[r+1:, r] = C[j:jnew]
|
||||
j = jnew
|
||||
#print Cmat
|
||||
#print x
|
||||
nrec = len(x[0]) # assume a 2-D array
|
||||
rslt = numpy.empty((nrec,), dtype=numpy.float64)
|
||||
for r in xrange(nrec):
|
||||
rslt[r] = C[0] \
|
||||
+ numpy.sum( Cmat * numpy.outer(x[:,r], x[:,r]) )
|
||||
return rslt
|
||||
|
||||
def NParams(self):
|
||||
# 1 is for the constant term
|
||||
return 1 + self.dim * (self.dim + 1) / 2
|
||||
|
||||
|
||||
class Poly_order3(Poly_base):
|
||||
"""Multidimensional polynomial of order 3 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 3
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*3+1] * x[i] + C[i*3+2] * x[i]**2 + C[i*3+3] * x[i]**3 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
class Poly_order4(Poly_base):
|
||||
"""Multidimensional polynomial of order 4 without cross terms.
|
||||
The linear terms are deleted."""
|
||||
order = 4
|
||||
def __call__(self, C, x):
|
||||
return C[0] \
|
||||
+ sum([ C[i*4+1] * x[i] + C[i*4+2] * x[i]**2 + C[i*4+3] * x[i]**3 + C[i*4+4] * x[i]**4 \
|
||||
for i in xrange(len(x)) ])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user