* Added wpylib.math.stats.jackknife1, initial implementation of delete-one
jackknife resampling method. This module also contains a hack for weighted average (warning: the theory is not established yet, at least I have not seen it).
This commit is contained in:
162
math/stats/jackknife1.py
Normal file
162
math/stats/jackknife1.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""
|
||||
REFERENCES:
|
||||
|
||||
Jackknife and Bootstrap Resampling Methods in Statistical Analysis to Correct for Bias.
|
||||
P. Young
|
||||
http://young.physics.ucsc.edu/jackboot.pdf
|
||||
|
||||
|
||||
Notes on Bootstrapping
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
import numpy
|
||||
|
||||
from numpy import pi, cos
|
||||
from numpy.random import normal
|
||||
|
||||
def test1_generate_data(ndata=1000):
|
||||
"""
|
||||
|
||||
"""
|
||||
return pi / 3 + normal(size=ndata)
|
||||
|
||||
|
||||
def test1():
|
||||
global test1_dset
|
||||
test1_dset = test1_generate_data()
|
||||
dset = test1_dset
|
||||
print "first jackknife routine: jk_generate_datasets -> jk_wstats"
|
||||
dset_jk = jk_generate_datasets(dset)
|
||||
cos_avg1 = jk_wstats(dset_jk, func=numpy.cos)
|
||||
print cos_avg1
|
||||
|
||||
print "second jackknife routine: jk_generate_averages -> jk_stats_aa"
|
||||
aa_jk = jk_generate_averages(dset)
|
||||
cos_avg2 = jk_stats_aa(aa_jk, func=numpy.cos)
|
||||
print cos_avg2
|
||||
|
||||
# the two results above must be identical
|
||||
|
||||
|
||||
def test2_generate_data():
|
||||
rootdir = "/home/wirawan/Work/PWQMC-77/expt/qmc/MnO/AFM2/rh.1x1x1/Opium-GFRG/vol10.41/k-0772+3780+2187.run"
|
||||
srcfile = rootdir + "/measurements.h5"
|
||||
from pyqmc.results.pwqmc_meas import meas_hdf5
|
||||
|
||||
global test2_db
|
||||
test2_db = meas_hdf5(srcfile)
|
||||
|
||||
|
||||
def jk_select_dataset(a, i):
|
||||
"""Selects the i-th dataset for jackknife operation from a
|
||||
given dataset 'a'.
|
||||
The argument i must be: 0 <= 0 < len(a).
|
||||
This is essentially deleting the i-th data point from the
|
||||
original dataset.
|
||||
"""
|
||||
a = numpy.asarray(a)
|
||||
N = a.shape[0]
|
||||
assert len(a.shape) == 1
|
||||
assert 0 <= i < N
|
||||
rslt = numpy.empty(shape=(N-1,), dtype=a.dtype)
|
||||
rslt[:i] = a[:i]
|
||||
rslt[i:] = a[i+1:]
|
||||
return rslt
|
||||
|
||||
def jk_generate_datasets(a):
|
||||
"""Generates ALL the datasets for jackknife operation from
|
||||
the original dataset 'a'.
|
||||
For the i-th dataset, this is essentially deleting the
|
||||
i-th data point from 'a'.
|
||||
"""
|
||||
a = numpy.asarray(a)
|
||||
N = a.shape[0]
|
||||
assert len(a.shape) == 1
|
||||
rslt = numpy.empty(shape=(N,N-1,), dtype=a.dtype)
|
||||
for i in xrange(N):
|
||||
rslt[i, :i] = a[:i]
|
||||
rslt[i, i:] = a[i+1:]
|
||||
return rslt
|
||||
|
||||
def jk_generate_averages(a, weights=None):
|
||||
"""Generates ALL the average samples for jackknife operation
|
||||
from the original dataset 'a'.
|
||||
For the i-th dataset, this is essentially deleting the
|
||||
i-th data point from 'a', then taking the average.
|
||||
|
||||
This version does not store N*(N-1) data points; only (N).
|
||||
"""
|
||||
a = numpy.asarray(a)
|
||||
N = a.shape[0]
|
||||
assert len(a.shape) == 1
|
||||
aa_jk = numpy.empty(shape=(N,), dtype=a.dtype)
|
||||
dset_i = numpy.empty(shape=(N-1,), dtype=a.dtype)
|
||||
if weights != None:
|
||||
weights_i = numpy.empty(shape=(N-1,), dtype=weights.dtype)
|
||||
for i in xrange(N):
|
||||
dset_i[:i] = a[:i]
|
||||
dset_i[i:] = a[i+1:]
|
||||
if weights != None:
|
||||
weights_i[:i] = weights[:i]
|
||||
weights_i[i:] = weights[i+1:]
|
||||
aa_jk[i] = numpy.average(dset_i, weights=weights_i)
|
||||
else:
|
||||
aa_jk[i] = numpy.mean(dset_i)
|
||||
|
||||
return aa_jk
|
||||
|
||||
'''
|
||||
def jk_stats_old(a_jk, func=None):
|
||||
"""a_jk must be in the same format as that produced by
|
||||
|
||||
"""
|
||||
# get all the jackknived stats.
|
||||
if func == None:
|
||||
jk_mean = numpy.mean(a_jk, axis=1)
|
||||
else:
|
||||
jk_mean = numpy.mean(func(a_jk), axis=1)
|
||||
'''
|
||||
|
||||
def jk_wstats_dsets(a_jk, w_jk=None, func=None):
|
||||
"""a_jk and w_jk must be in the same format as that produced by
|
||||
jk_generate_datasets.
|
||||
|
||||
"""
|
||||
# get all the jackknived stats.
|
||||
N = len(a_jk)
|
||||
# reconstruct full "a" array:
|
||||
a = numpy.empty(shape=(N,), dtype=a_jk.dtype)
|
||||
a[1:] = a_jk[0]
|
||||
a[0] = a_jk[1][0]
|
||||
if func == None:
|
||||
func = lambda x : x
|
||||
aa_jk = numpy.average(a_jk, axis=1, weights=w_jk)
|
||||
#print aa_jk
|
||||
f_jk = func(aa_jk)
|
||||
mean = numpy.mean(f_jk)
|
||||
var = numpy.std(f_jk) * numpy.sqrt(N-1)
|
||||
mean_unbiased = N * func(a.mean()) - (N-1) * mean
|
||||
return (mean, var, mean_unbiased)
|
||||
|
||||
|
||||
def jk_stats_aa(aa_jk, func=None, a=None):
|
||||
"""Computes the jackknife statistics from the preprocessed
|
||||
jackknife averages (aa_jk).
|
||||
The input array aa_jk is computed by jk_generate_averages().
|
||||
"""
|
||||
# get all the jackknived stats.
|
||||
N = len(aa_jk)
|
||||
# reconstruct full "a" array:
|
||||
if func == None:
|
||||
func = lambda x : x
|
||||
f_jk = func(aa_jk)
|
||||
mean = numpy.mean(f_jk)
|
||||
var = numpy.std(f_jk) * numpy.sqrt(N-1)
|
||||
if a != None:
|
||||
mean_unbiased = N * func(a.mean()) - (N-1) * mean
|
||||
else:
|
||||
mean_unbiased = None
|
||||
return (mean, var, mean_unbiased)
|
||||
Reference in New Issue
Block a user