* Added writing facility. Still largely untested.
This commit is contained in:
154
iofmt/fortbin.py
154
iofmt/fortbin.py
@@ -1,4 +1,4 @@
|
||||
# $Id: fortbin.py,v 1.1 2010-02-08 21:49:54 wirawan Exp $
|
||||
# $Id: fortbin.py,v 1.2 2010-02-19 18:39:17 wirawan Exp $
|
||||
#
|
||||
# wpylib.iofmt.fortbin module
|
||||
# Created: 20100208
|
||||
@@ -15,28 +15,40 @@ import sys
|
||||
from wpylib.sugar import ifelse
|
||||
|
||||
class fortran_bin_file(object):
|
||||
"""A tool for reading Fortran binary files."""
|
||||
def __init__(self, filename=None):
|
||||
self.record_marker_type = numpy.uint32
|
||||
self.debug = 100
|
||||
if filename:
|
||||
self.open(filename)
|
||||
"""A tool for reading Fortran binary files.
|
||||
|
||||
def open(self, filename):
|
||||
self.F = open(filename, "rb")
|
||||
Caveat: On 64-bit systems, typical Fortran implementations still have int==int32
|
||||
(i.e. the LP64 programming model), unless "-i8" kind of option is enabled.
|
||||
To use 64-bit default integer, set the default_int attribute to numpy.int64 .
|
||||
"""
|
||||
record_marker_type = numpy.uint32
|
||||
default_int = numpy.int32
|
||||
default_float = numpy.float64
|
||||
default_str = numpy.str_
|
||||
|
||||
def __init__(self, filename=None, mode="r"):
|
||||
self.debug = 0
|
||||
if filename:
|
||||
self.open(filename, mode)
|
||||
|
||||
def open(self, filename, mode="r"):
|
||||
self.F = open(filename, mode+"b")
|
||||
|
||||
def read(self, *fields, **opts):
|
||||
"""Reads a Fortran record.
|
||||
The description of the fields are given as
|
||||
(name, dtype, length) tuples."""
|
||||
from numpy import fromfile as rd
|
||||
if self.debug:
|
||||
if self.debug or opts.get("debug"):
|
||||
dbg = lambda msg : sys.stderr.write(msg)
|
||||
else:
|
||||
dbg = lambda msg : None
|
||||
def fld_count(f):
|
||||
if len(f) > 2:
|
||||
return f[2]
|
||||
if isinstance(f[2], (list,tuple)):
|
||||
return numpy.product(f[2])
|
||||
else:
|
||||
return f[2]
|
||||
else:
|
||||
return 1
|
||||
|
||||
@@ -52,6 +64,8 @@ class fortran_bin_file(object):
|
||||
|
||||
if "out" in opts:
|
||||
rslt = opts["out"]
|
||||
elif "dest" in opts:
|
||||
rslt = opts["dest"]
|
||||
else:
|
||||
rslt = {}
|
||||
|
||||
@@ -67,7 +81,14 @@ class fortran_bin_file(object):
|
||||
if len(f) > 2:
|
||||
(name,Dtyp,Len) = f
|
||||
dtyp = numpy.dtype(Dtyp)
|
||||
setval(rslt, name, numpy.fromfile(self.F, dtyp, Len))
|
||||
Len2 = fld_count(f)
|
||||
if isinstance(f[2], list) or isinstance(f[2], tuple):
|
||||
# Special handling for shaped arrays
|
||||
arr = numpy.fromfile(self.F, dtyp, Len2)
|
||||
setval(rslt, name, arr.reshape(tuple(Len), order='F'))
|
||||
else:
|
||||
setval(rslt, name, numpy.fromfile(self.F, dtyp, Len2))
|
||||
|
||||
else:
|
||||
# Special handling for scalars
|
||||
name = f[0]
|
||||
@@ -87,3 +108,112 @@ class fortran_bin_file(object):
|
||||
|
||||
return rslt
|
||||
|
||||
def writevals(self, *vals, **opts):
|
||||
"""Writes a Fortran record.
|
||||
Only values need to be given, because the types are known.
|
||||
This is a direct converse of read subroutine."""
|
||||
if self.debug:
|
||||
dbg = lambda msg : sys.stderr.write(msg)
|
||||
else:
|
||||
dbg = lambda msg : None
|
||||
|
||||
vals0 = vals
|
||||
vals = []
|
||||
for v in vals0:
|
||||
if isinstance(v, int):
|
||||
v2 = self.default_int(v)
|
||||
if v2 != v:
|
||||
raise OverflowError, \
|
||||
"Integer too large to represent by default int: %d" % v
|
||||
vals.append(v2)
|
||||
elif isinstance(v, float):
|
||||
v2 = self.default_float(v)
|
||||
# FIXME: check for overflow error like in integer conversion above
|
||||
vals.append(v2)
|
||||
elif isinstance(v, str):
|
||||
v2 = self.default_str(v)
|
||||
vals.append(v2)
|
||||
elif "itemsize" in dir(v):
|
||||
vals.append(v)
|
||||
else:
|
||||
raise NotImplementedError, \
|
||||
"Unsupported object of type %s of value %s" \
|
||||
(str(type(v)), str(v))
|
||||
|
||||
reclen = numpy.sum([ v.size * v.itemsize for v in vals ], \
|
||||
dtype=self.record_marker_type)
|
||||
|
||||
dbg("Record length = %d\n" % reclen)
|
||||
dbg("Item count = %d\n" % len(vals))
|
||||
reclen.tofile(self.F)
|
||||
|
||||
for v in vals:
|
||||
if isinstance(v, numpy.ndarray):
|
||||
# Always store in "Fortran" format, i.e. column major
|
||||
# Since tofile() always write in the row major format,
|
||||
# we will transpose it before writing:
|
||||
v.T.tofile(self.F)
|
||||
else:
|
||||
v.tofile(self.F)
|
||||
|
||||
reclen.tofile(self.F)
|
||||
|
||||
|
||||
def writefields(self, src, *fields, **opts):
|
||||
if (issubclass(src.__class__, dict) and issubclass(dict, src.__class__)) \
|
||||
or "__getitem__" in dir(src):
|
||||
def getval(d, k):
|
||||
return d[k]
|
||||
else:
|
||||
# Assume we can use getattr method:
|
||||
getval = getattr
|
||||
|
||||
vals = []
|
||||
for f in fields:
|
||||
if isinstance(f, str):
|
||||
vals.append(getval(src, f))
|
||||
elif isinstance(f, (list, tuple)):
|
||||
v = getval(src, f[0])
|
||||
# FIXME: check datatype and do necessary conversion if f[1] exists
|
||||
# Exception: if a string spec is found, we will retrofit the string
|
||||
# to that kind of object. Strings that are too long are silently
|
||||
# truncated and those that are too short will have whitespaces
|
||||
# (ASCII 32) appended.
|
||||
if len(f) > 1:
|
||||
dtyp = numpy.dtype(f[1])
|
||||
if dtyp.char == 'S':
|
||||
strlen = dtyp.itemsize
|
||||
v = self.default_str("%-*s" % (strlen, v[:strlen]))
|
||||
# FIXME: check dimensionality if f[2] exists
|
||||
vals.append(v)
|
||||
else:
|
||||
raise ValueError, "Invalid field type: %s" % str(type(f))
|
||||
|
||||
def array_major_dim(arr):
|
||||
"""Tests whether a numpy array is column or row major.
|
||||
It will return the following:
|
||||
-1 : row major
|
||||
+1 : column major
|
||||
0 : unknown (e.g. no indication one way or the other)
|
||||
In the case of inconsistent order, we will raise an exception."""
|
||||
if len(arr.shape) <= 1:
|
||||
return 0
|
||||
elif arr.flags['C_CONTIGUOUS']:
|
||||
return -1
|
||||
elif arr.flags['F_CONTIGUOUS']:
|
||||
return +1
|
||||
# In case of noncontiguous array, we will have to test it
|
||||
# based on the strides
|
||||
else:
|
||||
Lstrides = numpy.array(arr.shape[:-1])
|
||||
Rstrides = numpy.array(arr.shape[1:])
|
||||
if numpy.all(Lstrides >= Rstrides):
|
||||
# Categorizes equal consecutive strides to "row major" as well
|
||||
return -1
|
||||
elif numpy.all(Lstrides <= Rstrides):
|
||||
return +1
|
||||
else:
|
||||
raise RuntimeError, \
|
||||
"Unable to determine whether this is a row or column major object."
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user