* Introduced a much faster way (and simpler) to compute jackknife averages.
This commit is contained in:
@@ -7,7 +7,8 @@ http://young.physics.ucsc.edu/jackboot.pdf
|
|||||||
|
|
||||||
|
|
||||||
Notes on Bootstrapping
|
Notes on Bootstrapping
|
||||||
|
Author unspecified
|
||||||
|
http://www.math.ntu.edu.tw/~hchen/teaching/LargeSample/notes/notebootstrap.pdf
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
@@ -81,13 +82,15 @@ def jk_generate_datasets(a):
|
|||||||
rslt[i, i:] = a[i+1:]
|
rslt[i, i:] = a[i+1:]
|
||||||
return rslt
|
return rslt
|
||||||
|
|
||||||
def jk_generate_averages(a, weights=None):
|
def jk_generate_averages_old1(a, weights=None):
|
||||||
"""Generates ALL the average samples for jackknife operation
|
"""Generates ALL the average samples for jackknife operation
|
||||||
from the original dataset 'a'.
|
from the original dataset 'a'.
|
||||||
For the i-th dataset, this is essentially deleting the
|
For the i-th dataset, this is essentially deleting the
|
||||||
i-th data point from 'a', then taking the average.
|
i-th data point from 'a', then taking the average.
|
||||||
|
|
||||||
This version does not store N*(N-1) data points; only (N).
|
This version does not store N*(N-1) data points; only (N).
|
||||||
|
This version is SLOW because it has to compute
|
||||||
|
the averages N times---thus it still computationally scales as N**2.
|
||||||
"""
|
"""
|
||||||
a = numpy.asarray(a)
|
a = numpy.asarray(a)
|
||||||
N = a.shape[0]
|
N = a.shape[0]
|
||||||
@@ -108,6 +111,31 @@ def jk_generate_averages(a, weights=None):
|
|||||||
|
|
||||||
return aa_jk
|
return aa_jk
|
||||||
|
|
||||||
|
def jk_generate_averages(a, weights=None):
|
||||||
|
"""Generates ALL the average samples for jackknife operation
|
||||||
|
from the original dataset 'a'.
|
||||||
|
For the i-th dataset, this is essentially deleting the
|
||||||
|
i-th data point from 'a', then taking the average.
|
||||||
|
|
||||||
|
This version does not store N*(N-1) data points; only (N).
|
||||||
|
This version is faster by avoiding N computations of average.
|
||||||
|
"""
|
||||||
|
a = numpy.asarray(a)
|
||||||
|
N = a.shape[0]
|
||||||
|
assert len(a.shape) == 1
|
||||||
|
if weights != None:
|
||||||
|
weights = numpy.asarray(weights)
|
||||||
|
assert weights.shape == a.shape
|
||||||
|
aw = a * weights
|
||||||
|
num = numpy.sum(aw) * 1.0
|
||||||
|
denom = numpy.sum(weights)
|
||||||
|
aa_jk = (num - aw) / (denom - weights)
|
||||||
|
else:
|
||||||
|
num = numpy.sum(a) * 1.0
|
||||||
|
aa_jk = (num - a[i]) / (N - 1)
|
||||||
|
|
||||||
|
return aa_jk
|
||||||
|
|
||||||
'''
|
'''
|
||||||
def jk_stats_old(a_jk, func=None):
|
def jk_stats_old(a_jk, func=None):
|
||||||
"""a_jk must be in the same format as that produced by
|
"""a_jk must be in the same format as that produced by
|
||||||
@@ -121,9 +149,10 @@ def jk_stats_old(a_jk, func=None):
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
def jk_wstats_dsets(a_jk, w_jk=None, func=None):
|
def jk_wstats_dsets(a_jk, w_jk=None, func=None):
|
||||||
"""a_jk and w_jk must be in the same format as that produced by
|
"""Computes the jackknife statistics from the preprocessed datasets
|
||||||
|
produced by jk_generate_datasets() routine.
|
||||||
|
The input a_jk and w_jk must be in the same format as that produced by
|
||||||
jk_generate_datasets.
|
jk_generate_datasets.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
# get all the jackknived stats.
|
# get all the jackknived stats.
|
||||||
N = len(a_jk)
|
N = len(a_jk)
|
||||||
|
|||||||
Reference in New Issue
Block a user